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Abstract 19 

We utilise energy budget diagnostics from the Coupled Model Intercomparison Project 20 

phase 5 (CMIP5) to evaluate the models’ climate forcing since preindustrial times 21 

employing an established regression technique. The climate forcing evaluated this way, 22 

termed the adjusted forcing (AF), includes a rapid adjustment term associated with cloud 23 

changes and other tropospheric and land-surface changes. We estimate a 2010 total 24 

anthropogenic and natural AF from CMIP5 models of 1.9 ± 0.9 W m-2 (5-95% range). The 25 

projected AF of the Representative Concentration Pathway (RCP) simulations are lower 26 

than their expected radiative forcing (RF) in 2095 but agree well with efficacy weighted 27 

forcings from integrated assessment models. The smaller AF, compared to RF, is likely 28 

due to cloud adjustment. Multi-model time series of temperature change and AF from 29 

1850 to 2100 have large inter-model spreads throughout the period. The inter-model 30 

spread of temperature change is principally driven by forcing differences in the present 31 

day and climate feedback differences in 2095, although forcing differences are still 32 

important for model spread at 2095. We find no significant relationship between the 33 

equilibrium climate sensitivity (ECS) of a model and its 2003 AF, in contrast to that found 34 

in older models where higher ECS models generally had less forcing. Given the large 35 

present day model spread there is no indication of any tendency by modelling groups to 36 

adjust their aerosol forcing in order to produce observed trends. Instead, some CMIP5 37 

models have a relatively large positive forcing and overestimate the observed temperature 38 

change.  39 
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1. Introduction  40 

Radiative forcings (RFs) are used extensively to quantify the drivers of climate change. 41 

Forcings can prove very useful in understanding differences between model responses to 42 

alternative forcing agents [ Shine and Forster, 1999; Hansen et al., 2005]. Offline 43 

comparisons between the radiative transfer codes used in atmosphere-ocean general 44 

circulation models (AOGCMs) with more accurate line-by-line codes have identified 45 

potentially important sources of error (> 20%) in how AOGCM radiative transfer codes 46 

compute radiative forcing [Collins et al., 2006; Forster et al., 2011] so it is important to 47 

test the veracity of their forcing estimates when running in coupled mode. However, this 48 

calculation of RF is difficult in practice and within climate models adjusted forcings (AFs) 49 

are more readily calculated from standard diagnostics using either fixed sea-surface 50 

temperature (SST) [Hansen et al., 2005] or linear regression techniques [Gregory et al., 51 

2004].  52 

Adjusted forcings are similar to RFs but additionally include rapid adjustments to the 53 

land-surface and troposphere that typically occur within a few days of applying a forcing 54 

and are largely due to cloud changes in the troposphere [Andrews and Forster, 2008; 55 

Dong et al., 2009; Andrews et al. 2012a]. Importantly these rapid adjustments depend on 56 

the magnitude and nature of the forcing agent rather than on global mean temperature 57 

change [Gregory and Webb, 2008; Andrews et al., 2010], and it has been argued [ 58 

Rotstayn and Penner, 2001; Gregory and Forster, 2008; Lohmann et al., 2010; Bala et 59 

al., 2010] that they are more appropriately regarded as forcings rather than feedbacks. 60 

Forster and Taylor [2006], hereinafter FT06, developed a methodology to diagnose 61 

globally averaged AF in Coupled Model Intercomparison Project phase 3 (CMIP3) 62 

models and we use the same approach here within CMIP5 models, taking advantage of 63 



4 

 

their improved diagnostics and additional integrations to improve the methodology.  We 64 

use these CMIP5 diagnostics to determine globally averaged AF components and energy 65 

budget changes since 1850 and use these to investigate how gross characteristics of the 66 

models evolve, concentrating on the factors influencing the spread of simulated time series 67 

for global average surface temperature and AF. 68 

2. Methodology 69 

The FT06 method makes use of a global linearized energy budget approach where the top 70 

of atmosphere (TOA) change in energy imbalance (N) is split between a climate forcing 71 

component (F) and a component associated with climate feedbacks that is proportional to 72 

globally averaged surface temperature change (ΔT), such that: 73 

N  = F  - α ΔT                             (1) 74 

where α is the climate feedback parameter in units of W m-2 K-1. To remove the effects of 75 

any preindustrial energy imbalance, N and ΔT are quantified as the difference from a 76 

preindustrial control simulation. CMIP5 models provide a long preindustrial control 77 

simulation from which the historical simulations branch. AOGCMs require a long spin up 78 

period for the ocean and their preindustrial control simulations are not necessarily in 79 

equilibrium. Further, even if the surface climate is near a steady state the TOA net 80 

radiation anomaly may still be non-zero as deep-ocean temperatures continue to evolve. 81 

The preindustrial climates of the CMIP5 models analysed were much closer to equilibrium 82 

and had less drift than the CMIP3 models. Nevertheless, some energy imbalance remained 83 

(Figure 1). In most models this imbalance was due to problems with closure of their 84 

energy budgets rather than a discernible drift. To address this, the individual flux terms 85 

and temperatures used in equation 1 were generated by subtracting any imbalance and its 86 
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drift from the equivalent segment of each model’s own preindustrial control simulation. 87 

This drift was calculated as a linear trend over the control segment and removed from the 88 

N and ΔT timeseries of the forced scenarios. 89 

 90 

AS in FT06 we use a two step process to derive timeseries for F.  Step 1 uses CO2-only 91 

climate-simulations to diagnose α terms using linear regression. As in Andrews et al. 92 

[2012b] this analysis uses the CMIP5 abrupt 4xCO2 simulations and regresses N against 93 

ΔT to diagnose the 4xCO2 AF as an intercept term and α as the slope of the regression 94 

line. Component α terms are presented in Table 1. Then, assuming α is both independent 95 

of forcing agent and time invariant, Step 2 employs equation 1 to diagnose the timeseries 96 

for F in a transient scenario run, using diagnostics of N and ΔT.  In step 2 we substitute 97 

these α terms into equation 1, using N and ΔT diagnostics from various forced scenarios to 98 

compute each model’s AF. The AF calculation is performed for the three historical 99 

scenarios from the late 19th century to 2005 (Historical - all natural and anthropogenic 100 

forcings; HistoricalGHG - long-lived greenhouse gas changes only; and HistoricalNat - 101 

natural solar and volcanic forcings only), and the four Representative Concentration 102 

Pathways of future anthropogenic changes in atmospheric composition (RCP2.6, RCP4.5, 103 

RCP6.0 and RCP8.5). These RCPs are named after the 2100 radiative forcing they aim to 104 

generate relative to 1750 [Meinshausen et al., 2011].  RCP2.6 should have a peak 105 

radiative forcing of 3 W m-2 declining to 2.6 W m-2 by 2100. RCP4.5 and RCP 6.0 should 106 

have radiative forcings close to 4.5 W m-2 and 6.0 W m-2, respectively, on stabilisation of 107 

greenhouse gas concentrations after 2100. RCP8.5 should lead to a radiative forcing close 108 

to 8.5 W m-2 by 2100. However, Meinshausen et al. [2011] found that integrated 109 
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assessment models generated smaller RFs in 2100, namely 2.5, 4.1, 5.3 and 8.2 W m-2  for 110 

RCP2.6, RCP4.5, RCP6.0 and RCP8.5 respectively. 111 

 112 

The original FT06 analysis differed from the analysis here (hereinafter referred to as 113 

FT06-updated) into its approach to step 1. In the original FT06 method, each modeling 114 

groups’ estimate of their model’s 2xCO2 radiative forcing, along with N and ΔT values 115 

from 1% per year CO2 increase runs, were used to determine α. The radiative forcing was 116 

taken as  the stratospherically adjusted Intergovernmental Panel on Climate Change 117 

(IPCC) forcing definition [Ramaswamy et al., 2001], whereas the forcing methodology in 118 

Step 2 has a component of rapid adjustment, as the N timeseries used to diagnose F was 119 

measured as monthly TOA fluxes in a scenario integration that would be continually 120 

adjusting to the underlying forcing. Therefore steps 1 and 2 in the original method used 121 

inconsistent forcing definitions. By contrast, in FT06-updated, step 1 diagnoses both AF 122 

and α  as the intercept and slope of  the regression line  respectively, and therefore uses 123 

AF consistently in steps 1 and 2.  124 

To elucidate the role of historical forcings other than greenhouse gases, the HistoricalNat 125 

and HistoricalGHG scenarios were subtracted from the full historical simulation. 126 

Assuming linearity, the resulting residual Historical-nonGHG scenario was taken to 127 

represent the combined effects of aerosol as well as any land-use and ozone changes.  128 

Previous assessments have suggested that forcings from ozone and land-use could more or 129 

less cancel each other in the global mean so that this residual would dominated by aerosol 130 

effects [Forster et al., 2007; Skeie et al., 2011]. For example, Forster et al. [2007] 131 

estimated global mean RFs in 2005 of: +0.3 W m-2 from ozone changes; -0.2 W m-2 from 132 
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land-use albedo changes; and -0.5 W m-2 and -0.7 W m-2 for aerosol direct and indirect 133 

effects respectively.  134 

Not all models had the complete set of energy budget variables needed for the sensitivity 135 

and forcing analysis. The models in Table 1 were those with the necessary data, as of 136 

November 2012. All available ensemble members were used in the analysis and averaged 137 

over.  138 

3. Adjusted  Forcings 139 

Figure 2 shows the time evolution of globally averaged surface temperature and calculated 140 

AF, relative to the preindustrial climate, for historical and future scenarios. The variation 141 

of AF across models and scenarios is shown in Figure 3. Figure 4 breaks down the 142 

components of AF in the models for year 2003 (2001-2005 average) and year 2095 (2090-143 

2100 average). 144 

AFs for the individual models in these years are given in Table 2. In the historical 145 

simulations, the 2003 AF (2001-2005 average) was found to be 1.7 ± 0.9 W m-2 from the 146 

Historical simulation, 2.4 ± 0.8 W m-2 from the HistoricalGHG simulation, 0.1 ± 0.2 W 147 

m-2 from the HistoricalNat simulation, and -0.8 ± 0.9 W m-2 from the Historical-nonGHG 148 

residual simulation. This gives an anthropogenic (Historical minus HistoricalNat) AF of 149 

1.6 W m-2 ± 0.8 in 2003. All errors represent the 5%-95% model range. Multi-model mean 150 

AFs for the RCP scenarios all depart from their expected radiative forcings (Table 2 and 151 

Figure 2). RCP forcing estimates in 2095 are less than their targeted forcing, but agree 152 

very well with the forcing estimates derived from Integrated Assessment Modelling 153 

[Mienshausen et al., 2011]. When the different efficacies of the various forcing agents are 154 

accounted for, Mienshausen et al. finds effective forcings in 2095 of 2.3, 3.9, 5.2 and 8.0  155 
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Wm-2 for RCP2.6, RCP4.5, RCP6.0 and RCP8.5 respectively, within 10% of the CMIP5 156 

model-mean given in Table 2.  157 

The 5% to 95% uncertainty range of AF in the HistoricalGHG simulation in 2003 is ± 0.8 158 

W m-2, which is nearly as large as the spread associated with non greenhouse gas AF 159 

(Table 2). The evolution of net AF and surface temperature shows considerable spread 160 

among models (Figures 2 and 3). The fractional spread of net AF tends to grow much 161 

more in the historical period than in the future (Figure 3).  Examining Figure 3a and Table 162 

2, natural forcing differences contribute least to the fractional model spread and 163 

greenhouse gas and non greenhouse gas forcing contribute in roughly equal proportions. 164 

Figure 4 examines the components of AF. The positive longwave (LW) clear-sky forcing 165 

is associated with greenhouse gas changes and has least spread between models. The 166 

cloud AF terms are calculated from anomalies in cloud radiative effect (CRE) where all-167 

sky and clear sky fluxes are differenced. Because radiative anomalies due to changes in 168 

forcing agents, water vapor, surface albedo, etc. are smaller in the presence of clouds than 169 

they would be in the absence of clouds, CRE-derived cloud AF estimates include a 170 

component of cloud masking. Model differences in aerosol forcings, rapid adjustments 171 

and/or cloud masking effects can all contribute to the CRE-derived cloud AF spread. 172 

[Zelinka et al., manuscript in revision, 2012].  A LW cloud masking effect of roughly +0.6 173 

W m-2 is expected from a doubling of CO2 [Andrews and Forster, 2008; Soden et al., 174 

2008; Colman and McAvaney, 2011]. We adopt the sign convention that the cloud 175 

masking effect represents an additional positive forcing that needs to be added to CRE-176 

derived terms. As the forcing from CO2 is currently around half of its doubled CO2 value, 177 

this suggests that around +0.3 W m-2 of cloud masking needs to be added to the Historical 178 

CRE-derived cloud AF terms. The RCP 8.5 CRE-derived cloud AF would need to have a 179 
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larger component of masking added, around +0.6 W m-2. The shortwave (SW) clear-sky 180 

AF and CRE-derived cloud AF split would also be affected by cloud masking of sea-ice 181 

changes. Nevertheless, a negative CRE-derived cloud AF beyond that which is expected 182 

from cloud masking is seen in all the scenarios in Figure 4.  183 

The Historical-nonGHG AF shows a generally negative trend that turned weakly positive 184 

around 1990 in most models (Figures 2 and 3), although some models show a strongly 185 

negative AF and others have an AF near zero or slightly positive (Figure 3). Because of 186 

the multiple forcing agents represented in the Historical-nonGHG scenario, the CMIP5 187 

model spread in its AF of -0.8 ± 0.9 W m-2 in 2003 is difficult to interpret (see Section 4).  188 

4. Comparing forcing definitions 189 

In order to interpret the AFs given in Section 3 it is important to understand their 190 

uncertainty. Here we test three aspects of the analysis: i) limitations of the two step AF 191 

process; ii) representing cloud AF using CRE-derived AFs; iii) using the Historical-192 

nonGHG scenario as a proxy for aerosol AF.   193 

i) Limitations of the two step AF process 194 

FT06 found that forcings from the 2-step regression procedure agreed with offline 195 

radiative forcing calculations in two models. However, variation in climate sensitivity 196 

could in principle bias the AF estimates.  While some bias cannot be ruled out, for a 197 

scenario with CO2 increasing at 1% per year, ensemble mean AF (derived using the FT06-198 

updated method) has been found to increase linearly with time (to within the precision set 199 

by internal variability), as expected if climate sensitivity were approximately constant 200 

[Good et al. 2012].  To test this further, we compared the FT06-updated AF with an AF 201 
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derived from transient experiments where SSTs are prescribed from observations [Held et 202 

al., 2010]. The SST-derived method used two transient integrations, one with forcing 203 

agents and one without. The run with changes in forcing agents gives a heat balance 204 

described by equation 1 and the run without changes in forcing agents gives a heat balance 205 

described by (note the primes): 206 

N'  = F'  - α ΔT'                                                                        (2) 207 

where F' = 0 by definition.  As SSTs are identically prescribed in both, ΔT ~ ΔT', and 208 

substituting (2) into (1) gives: 209 

F = N - N'                                                                                 (3) 210 

AFs derived from these two definitions are compared in Figure 5. Although there is 211 

considerable variability in the FT06-updated AF, its AF seems to agree very well with the 212 

prescribed SST-derived AF from a 10-ensemble member average in this one CMIP3 213 

model. The AFs calculated from the two methods could diverge if the integration 214 

continued beyond 2000 out to 2100. Nevertheless, this comparison gives some confidence 215 

that differences between the FT06-updated AF and other AF estimates are comparable and 216 

not affected by an error associated with possible climate sensitivity drift with the FT06-217 

updated methodology.  218 

 219 

ii) Representing cloud AF using CRE-derived AFs 220 

To test the CRE-derived AF estimates and examine if they arise from a rapid adjustment 221 

of cloud or from cloud masking, cloud-induced radiation anomalies can be computed 222 

directly from cloud anomalies diagnosed by the ISCCP simulator [Klein and Jakob 1999; 223 
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Webb et al. 2001] in combination with cloud radiative kernels [Zelinka et al. 2012].  The 224 

kernels quantify the impact on TOA radiative fluxes of cloud fraction perturbations for 225 

each of the 49 different ISCCP simulator cloud types.  Multiplying cloud fraction 226 

anomalies by the kernels yields TOA radiation anomalies that are purely a result of cloud 227 

changes and are free of any non-cloud effects.  Therefore we refer to the cloud AFs and 228 

feedbacks that are computed from these cloud-induced anomalies as “unmasked,” to be 229 

distinguished from those derived using CRE, which include masking effects.   230 

 231 

To derive cloud AFs, we follow the exact same FT06-updated procedure as described in 232 

Section 2, but replace N in equation 1 with cloud-induced radiative flux anomalies, so that 233 

α is the unmasked cloud feedback.  The unmasked cloud feedback α terms are derived 234 

from the abrupt 4xCO2 runs in Zelinka et al., (manuscript under revision 2012) for the five 235 

models that have archived the necessary diagnostics. The CRE-derived and unmasked 236 

LW, SW, and net cloud AFs in 2003 for the Historical run are compared in Figure 6.  As 237 

expected, the unmasked LW cloud AF is systematically more positive than the CRE-238 

derived value in every model (0.56 W m-2 larger on average) and the unmasked SW cloud 239 

AF is systematically less positive or more negative than the CRE-derived value (0.32 W 240 

m-2 smaller on average).  This brings the unmasked negative net cloud AF in 2003 closer 241 

to zero (-0.33 rather than -0.57 W m-2) and increases the spread in this quantity among the 242 

five models. That the unmasked net cloud AF is non-zero indicates that cloud rapid 243 

adjustments are physically occurring, and are tending to reduce the effective climate 244 

forcing.  The difference between the unmasked and CRE-derived cloud AFs quantifies the 245 

amount of cloud masking in the Section 3 estimates of AF.  The net cloud masking effect 246 

at the end of the Historical run in these 5 models is systematically positive and averages to 247 
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0.24 W m-2. In agreement with expectations from Section 3, this is roughly half of the 248 

value expected for doubling of CO2. 249 

 250 

The SW cloud AF dominates over the LW cloud AF in every model, in agreement with 251 

previous studies. However, Zelinka et al. [manuscript under revision, 2012] find a positive 252 

unmasked SW rapid adjustment cloud AF under 4xCO2 for all 5 models, which raises the 253 

question of why most (3 out of these 5) models give negative unmasked SW cloud AFs in 254 

2003 given that CO2 is the dominant forcing agent in the latter part of the Historical run. 255 

This may be evidence that the non-CO2 forcing agents (which are present in the Historical 256 

run but not in the idealized 4xCO2 runs) cause significant cloud adjustments, even if they 257 

are not the ones responsible for most of the unadjusted forcing (just like cloud feedbacks 258 

are responsible for most of the spread in climate feedback, whereas water vapor is 259 

responsible for most of the ensemble mean feedback). Previous studies have found large 260 

cloud forcing from rapid adjustments associated with perturbations to the solar constant, 261 

black carbon, and ozone [e.g. Hansen et al., 2005; Bala et al. 2010; Ban Weiss et al. 262 

2011] but these cloud forcing vary considerably between the location and magnitude of 263 

the forcing agent and the model. On the other hand our diagnosed cloud AF could be an 264 

artefact of the assumptions inherent in the 2-step regression technique. 265 

iii) Using the Historical-nonGHG scenario as a proxy for aerosol AF.   266 

To test the aerosol AF estimate, we examined fixed SST experiments existing in the 267 

CMIP5 archive. In these experiments individual forcing agents have been introduced; 268 

present day aerosol perturbation experiments exist for three models and their AFs can be 269 

compared to the FT06-updated AFs, taken from the Historical-nonGHG simulations. The 270 
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fixed-SST AFs are taken as the difference of TOA fluxes between a forced and a 271 

preindustrial control experiment (as in equation 3). These AFs are given in Table 4, which 272 

also shows AFs from the FT06-updated method, repeated from Table 2. The AFs derived 273 

by the two methods are appreciably different, indicating that other non-greenhouse forcing 274 

agents, such as land-use and ozone, as well as the aerosol signal affect the Historical-275 

nonGHG simulations. 276 

This section has shown that it is not appropriate to represent aerosol AF by the Historical-277 

nonGHG residual scenario and that CRE-derived cloud AFs may not be representative of 278 

actual AFs from rapid cloud adjustment. Nevertheless the net AF does correctly capture 279 

both radiative forcing and cloud adjustment and could be expected to match other AF 280 

estimates over 1850-2100 simulations and can therefore provide useful insights into the 281 

causes of global-mean temperature change, examined next.  282 

5. Inter-model temperature spread 283 

This section uses the AFs diagnosed in Section 3 to help understand the gross 284 

characteristics of the CMIP5 models’ surface temperature response.  In particular, we 285 

focus on how differences in forcing and climate sensitivity affect the inter-model spread of 286 

surface temperature change. 287 

A model’s historical temperature trend depends on forcing, climate sensitivity and ocean 288 

heat uptake. As aerosol forcing and climate sensitivity are uncertain, modeling centers 289 

could be modifying their controlling factors to reproduce the observed globally averaged 290 

20th century temperature trends as well as possible. There was some evidence of a trade 291 

off between climate sensitivity and forcing in CMIP3 and earlier generations of models 292 

[Kiehl, 2007; Knutti, 2008]. Figure 7 reproduces Figure 1 of Kiehl [2007] for CMIP5 293 
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models and finds considerably smaller correlation than in either the CMIP3 analysis of 294 

Knutti [2008] or the older model analysis of Kiehl [2007] that are reproduced as blue and 295 

red symbols respectively. The R2 fit in CMIP5 models is slightly smaller than in CMIP3 296 

models and is not significant. The green squares show a subset of the CMIP5 models that 297 

match the observed century-scale linear temperature trends (0.57 to 0.92 K increase over 298 

1906-2006, IPCC [2007]). This subset reproduces the Kiehl [2007] fit almost perfectly. 299 

The CMIP5 models that are not in this grouping tend to have a larger positive AF 300 

compared to those that match observations and thereby overestimate the observed 301 

temperature trend. Variation in the magnitude of the CO2 AF affects both the AF in 2003 302 

and the ECS. Figure 8 shows that both AF in 2003 and the 2xCO2 AF are positively 303 

correlated with α [see also Andrews et al., 2012b]. This means that models with smaller 304 

sensitivities tend to also have smaller CO2 AFs which would act to converge models 305 

towards similar Historical temperature responses.  306 

 307 

The transient response of a model depends on ocean heat uptake as well as the 308 

Equilibrium Climate Sensitivity (ECS).  If modelling groups are adjusting forcing to 309 

match the observed temperature trends then one might expect that the correlation between 310 

2003 AF and the transient climate response (TCR) to be larger than the correlation 311 

between 2003 AF and ECS. However, these correlations are -0.11 and -0.41 respectively 312 

and neither is significant at the 5% level. 313 

The causes of model spread can be further examined by using the approach of Gregory 314 

and Forster [2008], whereby the global mean temperature change under a scenario of 315 

continually increasing forcing is:  316 
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 ΔT = F  / ρ                                                                           (4) 317 

where the climate resistance ρ = α + κ, κ being the ocean heat uptake efficiency.  318 

The estimates of ρ and κ from the 1% per year CO2 increase simulations are given in 319 

Table 1. The α values used are derived from the 4xCO2 abrupt integration from Section 3 320 

and are also presented in Table 1.  The α values derived from the 1% per year CO2 321 

increase integration (not shown) were very similar to values diagnosed from the 4xCO2 322 

abrupt integration [see also Kuhlbrodt and Gregory, 2012]. Figure 9 examines how AF in 323 

2003, ρ, α, κ influence the temperature change. As expected, AF  / ρ (Figure 9a) explains 324 

most of the variation in temperature, and AF  (Figure 9b) is by far the most important 325 

influence. Models with a Historical AF in 2003 that is more positive than about 2 Wm-2 326 

typically have a temperature change that is larger than observed.  In contrast, ρ, α and κ 327 

(Figures 9c,d and e) show no systematic tendency for affecting temperature. For example 328 

the HadGEM2-ES and GFDL-CM3 models exhibit two of the smallest temperature 329 

changes but also have two of the smallest α values (high ECS). Therefore their small 330 

temperature change results primarily from a small forcing. These results suggest that AF 331 

in some models may be too positive to accurately reproduce historic temperature trends. 332 

Multiple linear regression was used to model the CMIP5 spread of temperatures using 333 

explanatory variables of AF, α, ρ, and κ from Tables 1 and 2. Of these, the strongest 334 

correlation was found between AF and α at 0.62 (see Figure 8a). ρ and κ were somewhat 335 

positively correlated with F, but not by as much (0.45 and 0.02 respectively). These 336 

correlations mean that whilst models with larger AF generally have larger feedback 337 

parameters (smaller sensitivities) and more efficient ocean heat uptake (larger κ), no clear 338 

pattern of compensation emerges between climate model feedback parameters, or ocean 339 

heat uptake, and AF (see also Figure 9). 340 
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 341 

Figure 10 compares ρ derived from two RCPs with increasing forcing over 2000-2050, 342 

with ρ derived  from the 1% per year CO2 increase simulation that is used to define TCR. 343 

Estimates of ρ are generally well correlated between the RCP scenarios and the 1% per 344 

year CO2 increase simulation. κ values are not shown but follow a similar pattern. The 1% 345 

per year run has a larger forcing increase than RCP 8.5 and models have a consistently 346 

larger κ and ρ for this scenario than those derived from the other scenarios.  Likewise, 347 

RCP8.5, compared to RCP 4.5 has a larger forcing increase and larger κ and ρ over the 348 

period. A more rapid forcing increase would be better at maintaining stronger vertical 349 

temperature gradients within the ocean. These would be expected to be more efficient at 350 

transferring heat from the surface to the subsurface ocean, leading to a larger κ and, 351 

therefore, a larger ρ value.  352 

Figure 11a shows how the standard deviation in AF and temperature change projections 353 

between models varies with time for the RCP 8.5 scenario. Note the similarity of the two 354 

quantities, consistent with the expectation from equation 4 that temperature change is 355 

proportional to AF if climate resistance is constant. The coefficient of variation (standard 356 

deviation/mean) is largest for the present day (Figure 11b) because the standard deviation 357 

does not grow as rapidly as the model-mean.  358 

Examining model spread, an across-model regression of temperature change 359 

simultaneously against α and AF gave a good fit to the data for both 2010 and 2095 (see 360 

Figure 12). In RCP4.5 this regression explained 72% of the variation in temperature 361 

change and slope coefficients for both AF and α were statistically significant at the 0.1% 362 

significance level. For 2010 data, AF explained the largest proportion of variation in the 363 

temperature change (49%) with α improving the fit across the full range of temperature 364 
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changes. In contrast, α explained the largest proportion of variation in the temperature 365 

change in the 2095 data (42%) with forcing improving the fit particularly for data points 366 

with more extreme (both large and small) temperature changes. Temperature change is 367 

much more sensitive to variations in α in the 2095 data than in the 2010 data, with a 368 

regression slope coefficient of 1.45 ± 0.22 for 2095 compared to 0.56 ± 0.21 for 2010. 369 

There was no significant difference in sensitivity to AF between 2010 and 2095. 370 

This analysis shows that large forcing differences between models today give a large 371 

spread in model temperature change. This is likely due to the current strong aerosol 372 

forcing that varies considerably between models, but this aerosol forcing is projected to 373 

weaken. Any relationship between α and AF has little effect on model spread and there is 374 

no indication of models herding towards similar 20th century temperature trends. In the 375 

future the role of forcing remains important and, therefore, differences in forcing will need 376 

to be considered when comparing model simulations within a given scenario. 377 

6. Discussion and Conclusions 378 

The estimated anthropogenic AF of 1.6 W m-2 ± 0.9 and the estimated greenhouse gas AF 379 

of 2.4 ± 0.8 W m-2 in 2003 agree well with the last IPCC report and more recent estimates 380 

of radiative forcing, even though the definition of the two forcings differ. For example 381 

Forster et al. [2007] estimated a total anthropogenic forcing of 1.6 ± 1.0  W m-2 in 2005 382 

and Skeie et al. [2011] estimated a year 2000 greenhouse gas RF of 2.5 W m-2. 383 

The total AF from CMIP5 models, estimated to be 1.7 ± 0.9 W m-2 in 2003, grows to 1.9 ± 384 

0.9 Wm-2 in 2010. In contrast to the IPCC estimate, where the spread was principally 385 

attributed to aerosols, the spread found here comes from both non-greenhouse gas forcing 386 

agents and differences in the rapid adjustment of cloud to greenhouse gases. 387 
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The AF estimates made in this paper include a significant cloud component that acts to 388 

make the AF smaller than the expected RF. Because of this, the projected 2095 AFs are 389 

lower than the corresponding estimate of RF from the original RCP scenario. However, 390 

they agree well with the effective forcing estimate of the integrated assessment models 391 

[Meinshausen et al., 2011]. Consistent with a lower AF, Andrews et al. [2012b] found that 392 

CMIP5 models had a 4xCO2 AF that ranged between 5.6 and 8.5 W m-2, and was, on 393 

average, 0.4 W m-2 lower than the expected RF of 7.4  W m-2. Figures 1 and 3 in Andrews 394 

et al. [2012b]  suggest that rapid adjustments within this framework are not necessarily an 395 

immediate physical cloud change but could also be associated, in some AOGCMs, with a 396 

non-linear response in SW CRE principally found over oceans.  This is further supported 397 

in Zelinka et al. (manuscript in preparation, 2012) who show that unmasked cloud AFs 398 

diagnosed using this linear framework (i.e. the linear regression line intercept) tend to be 399 

negatively biased with respect to those diagnosed in fixed SST and perturbed CO2 400 

simulations. These caveats limit our ability to interpret RF and AF differences as a 401 

genuine cloud adjustment. 402 

Generally it would be useful to test the FT06-updated approach under a wider set of 403 

models and scenarios to better quantify and understand its errors, quantify differences 404 

with other AF methodologies, and quantify the role of rapid adjustment. 405 

Issues remain around the definitions of AF and the assumption of constant climate 406 

sensitivity within a transient forcing framework. The forcing/climate sensitivity concept 407 

developed essentially for slab-ocean models at equilibrium obviously does not provide a 408 

complete picture of climate evolution in today’s non-linear AOGCMs. Nevertheless, we 409 

argue that forcings are useful for understanding why models differ in their gross behaviour 410 

and forcings explain the spread of RCP projections rather well. Careful analysis of the 411 
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Earth’s energy budget examining climate response on multiple timescales is 412 

recommended.  413 
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Table 1. CMIP5 models employed in this paper and their feedback components computed  547 

 
Adjusted 
Forcing 

Climate 
Sensitivities 

(K) 
Transient feedbacks 

(Wm-2 K-1)a Feedbacks (α) (Wm-2 K-1) 

  
2xCO2 
(Wm-2) ECS TCR ρ κ 

LW clear-
sky 

SW clear-
sky 

Cloud:CRE
-derived Net 

ACCESS1-0 2.98 3.83 2.00 1.49 0.71 1.63 -0.77 -0.08 0.78 

bcc-csm1-1 3.23 2.82 1.70 1.90 0.76 1.91 -0.83 0.07 1.14 

bcc-csm1-1-m 3.55 2.87 2.10 1.69 0.45 1.98 -0.68 -0.06 1.24 

CanESM2 3.84 3.69 2.40 1.60 0.56 1.88 -0.71 -0.13 1.04 

CCSM4 3.57 2.89 1.80 1.98 0.75 1.95 -0.87 0.16 1.23 

CNRM-CM5 3.72 3.25 2.10 1.77 0.63 1.73 -0.78 0.20 1.14 

CSIRO-Mk3-6-0 2.59 4.08 1.80 1.44 0.81 1.70 -0.84 -0.23 0.63 

FGOALS-s2 3.85 4.17 2.40 1.60 0.68 1.46 -1.02 0.48 0.92 

GFDL-CM3 2.99 3.97 2.00 1.50 0.75 1.94 -0.70 -0.48 0.75 

GFDL-ESM2G 3.09 2.39 1.10 2.81 1.52 1.65 -0.61 0.26 1.29 

GFDL-ESM2M 3.36 2.44 1.30 2.58 1.20 1.63 -0.58 0.33 1.38 

GISS-E2-H 3.81 2.31 1.70 2.24 0.59 1.67 -0.49 0.47 1.65 

GISS-E2-R 3.78 2.11 1.50 2.52 0.73 1.66 -0.36 0.48 1.79 

HadGEM2-ES 2.93 4.59 2.50 1.17 0.53 1.66 -0.65 -0.37 0.64 

inmcm4 2.98 2.08 1.30 2.29 0.86 1.98 -0.67 0.12 1.43 

IPSL-CM5A-LR 3.10 4.13 2.00 1.55 0.80 1.99 -0.53 -0.70 0.75 

IPSL-CM5B-LR 2.66 2.61 1.50 1.77 0.75 1.88 -0.59 -0.28 1.02 

MIROC5 4.13 2.72 1.50 2.75 1.23 1.85 -0.84 0.51 1.52 

MIROC-ESM 4.26 4.67 2.20 1.93 1.02 1.93 -0.83 -0.19 0.91 

MPI-ESM-LR 4.09 3.63 2.00 2.05 0.92 1.79 -0.71 0.04 1.13 

MPI-ESM-P 4.31 3.45 2.00 2.16 0.91 1.80 -0.65 0.10 1.25 

MRI-CGCM3 3.25 2.60 1.60 2.03 0.78 1.99 -0.83 0.09 1.25 

NorESM1-M 3.11 2.80 1.40 2.22 1.11 1.86 -0.86 0.11 1.11 
Multi model 

mean 3.44 3.22 1.82 1.96 0.83 1.81 -0.71 0.04 1.13 

90% 
uncertainty 

0.84 1.32 0.63 0.73 0.41 0.25 0.24 0.53 0.51 

 548 

a1% CO2 increase scenario per year numbers are used to derive TCR, ρ and κ. 4xCO2 549 

abrupt CO2 scenario changes are used to determine the other quantities. Method follows 550 

Andrews et al. [2012b] updating to account for additional model availability.  Larger 551 

feedback values represent greater radiative damping of surface temperature anomalies and 552 

therefore smaller equilibrium climate sensitivity.  553 
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Table 2. AFs for different scenarios given at  2003 (2001-2005 average), 2010 (2008-554 

2012 average) and 2095 (2091 to 2099) 555 

  Adjusted forcing (Wm-2) for scenario and period 

  Hist 
2003 

HistGHG 
2003 

HistNat 
2003 

Hist 
NonGHG 

2003 

RCP 
4.5 

2010 

RCP2.6 
2095 

RCP4.5 
2095 

RCP6.0 
2095 

RCP8.5 
2095 

ACCESS1-0 1.1       1.4 
 

3.3 
 

6.2 

bcc-csm1-1 2.2 2.0 0.1 0.0 2.0 2.5 3.3 4.5 7.0 

bcc-csm1-1-m 2.2       2.2 1.9 3.3 4.3 7.0 

CanESM2 2.0 2.4 0.1 -0.5 2.2 2.9 4.3 
 

8.4 

CCSM4 2.5 2.3 0.1 0.1 2.7 2.8 4.3 5.4 8.3 

CNRM-CM5 1.5 2.2 0.1 -0.8 1.2 2.3 3.7 
 

6.9 

CSIRO-Mk3-6-0 0.9 1.4 0.1 -0.6 1.0 1.9 2.8 3.4 5.7 

FGOALS-s2 2.3       2.8 2.5 4.3 6.5 10.0 

GFDL-CM3 1.1 2.9 0.5 -2.2 1.7 3.1 4.2 4.9 7.2 

GFDL-ESM2G 2.0       1.9 1.2 2.8 3.9 6.4 

GFDL-ESM2M 2.0 2.5 0.2 -0.7 2.2 2.5 3.5 4.9 7.3 

GISS-E2-H 2.3 3.2 0.2 -1.0   
   

  

GISS-E2-R 2.5 3.3 0.2 -0.9 2.5 2.6 4.7 5.9 8.6 

HadGEM2-ES 0.8 1.9 0.1 -1.1 1.0 1.7 2.9 4.0 5.9 

inmcm4 1.7       1.9 
 

3.8 
 

7.3 

IPSL-CM5A-LR 1.9 2.4 0.2 -0.7 1.8 2.2 3.5 4.3 7.1 

IPSL-CM5B-LR 1.0         
   

  

MIROC5 1.6       2.0 3.0 4.5 5.3 8.7 

MIROC-ESM 1.1 2.2 0.0 -1.0 1.5 2.8 4.0 5.1 8.2 

MPI-ESM-LR 2.1       2.3 2.2 3.9 
 

7.7 

MPI-ESM-P 2.3         
   

  

MRI-CGCM3 1.2 2.1 0.2 -1.1 1.2 2.1 3.6 4.3 7.0 

NorESM1-M 1.4 2.3 0.0 -0.9 1.7 2.0 3.6 4.2 7.0 

Multi model mean 1.7 2.4 0.1 -0.8 1.9 2.3 3.7 4.7 7.4 

90% uncertainty 0.9 0.8 0.2 0.9 0.9 0.8 0.9 1.3 1.8 

  556 
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Table 3  Temperature changes since preindustrial times for different scenarios given at  557 

2003 (2001-2005 average), 2010 (2008-2012 average) and 2095 (2091 to 2099) 558 

  Temperature change since pre-industrial (K) for scenario and period 

  Hist 
2003 

Hist 
GHG 
2003 

Hist 
Nat 

2003 

Hist 
NonGH
G 2003 

RCP 4.5 
2010 

RCP2.6 
2095 

RCP4.5 
2095 

RCP6.0 
2095 

RCP8.5 
2095 

ACCESS1-0 0.6 
   

0.8 
 

2.7 
 

4.8 
bcc-csm1-1 1.2 1.4 0.1 -0.3 1.4 2.0 2.5 3.1 4.6 
bcc-csm1-1-m 1.7 

   
1.8 2.0 2.7 3.2 4.8 

CanESM2 1.0 1.6 -0.1 -0.4 1.2 2.3 3.2 
 

5.5 
CCSM4 1.3 1.3 0.0 -0.1 1.3 1.9 2.7 3.2 4.7 
CNRM-CM5 1.0 1.3 0.1 -0.4 1.1 1.8 2.7 

 
4.5 

CSIRO-Mk3-6-0 0.7 1.2 0.2 -0.7 0.7 1.9 2.5 2.9 4.8 
FGOALS-s2 1.8 

   
2.0 2.1 3.0 4.4 6.6 

GFDL-CM3 0.3 1.8 -0.1 -1.4 0.9 2.1 2.9 3.5 5.1 
GFDL-ESM2G 0.8 

   
1.0 0.8 1.6 2.2 3.6 

GFDL-ESM2M 0.8 1.0 0.0 -0.2 0.8 1.3 1.8 2.3 3.5 
GISS-E2-H 1.2 1.4 0.1 -0.3   

   
  

GISS-E2-R 1.1 1.2 0.2 -0.3 1.1 1.4 2.2 2.6 3.7 
HadGEM2-ES 0.5 1.5 0.0 -1.0 0.7 1.7 2.8 3.6 5.2 
inmcm4 0.8 

   
0.9 

 
2.0 

 
3.5 

IPSL-CM5A-LR 1.4 1.9 0.2 -0.7 1.5 2.3 3.3 3.8 5.8 
IPSL-CM5B-LR 0.9 

   
  

   
  

MIROC5 0.6 
   

0.8 1.4 2.1 2.5 4.0 
MIROC-ESM 0.7 1.3 0.0 -0.6 1.0 2.3 3.1 3.7 5.5 
MPI-ESM-LR 1.0 

   
1.2 1.5 2.5 

 
4.6 

MPI-ESM-P 1.0 
   

  
   

  
MRI-CGCM3 0.6 1.1 0.1 -0.6 0.5 1.3 2.1 2.4 3.9 
NorESM1-M 0.7 1.2 -0.1 -0.4 1.0 1.4 2.2 2.5 4.0 

Multi model mean 1.0 1.4 0.1 -0.5 1.1 1.8 2.5 3.1 4.6 
90% uncertanity 0.6 0.4 0.2 0.6 0.6 0.7 0.8 1.1 1.4 
 559 

  560 
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 561 

Table 4. AFs calculated for aerosol-only perturbations in fixed SST experiments 562 

compared to AFs for 2003 from the FT06-updated Historical-nonGHG residual scenario. 563 

Model Net Clear-sky Cloud: CRE derived 

 Forcing (Wm-2) 
  Fixed SST 
CanESM2 -0.86 -0.59 -0.28 
CSIRO-Mk3 -1.41 -1.04 -0.37 
HadGEM2-ES  -1.23 -0.35 -0.88 
  FT06-updated residual 
CanESM2 -0.51 -0.33 -0.18 
CSIRO-Mk3 -0.61 -0.59 -0.02 
HadGEM2-ES  -1.12 -0.66 -0.46 

  564 
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 565 

Figure 1. Preindustrial TOA energy imbalance (Wm-2) for the CMIP5 models. These were 566 

averaged over the entire preindustrial control period. Note additional models are included, 567 

compared to the main analysis (compare Table 1). 568 
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 571 

Figure 2. The globally averaged surface temperature change since preindustrial times 572 

(top) and computed net AF (bottom). Thin lines are individual model results averaged 573 

over their available ensemble members and thick lines represent the multi-model mean. 574 

The Historical-nonGHG scenario is computed as a residual and approximates the role of 575 

aerosols (see Section 2). 576 
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 578 

Figure 3. Time series of AF from the different a) historical scenarios and b) future 579 

scenarios.   580 
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 581 

Figure 4. Diagnosed AFs (since preindustrial) for the Historical, HistoricalGHG, and  582 

RCP8.5 scenarios. The historical scenarios give the AF for 2003 (2001-2005 average) and 583 

the RCP scenario  for 2095 (2091-2099 average). AFs are given for the LW clear-sky 584 

forcing, the SW clear-sky forcing, the CRE-derived cloud forcing, and the net forcing.  585 

Note that the CRE-derived cloud forcing includes a component due to cloud masking 586 

effects.   Error bars represent the standard deviation of the model range.   587 
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 588 

Figure 5. A comparison of two methods of calculating AF in the CMIP3 GFDL CM2.1 589 

model. The black line is a calculation of AF that uses two prescribed SST integration 590 

experiments, with and without forcing agents, and compares TOA fluxes [Held et al., 591 

2010]. The AF in the red line employs our FT06-updated method in the same model.  592 
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 593 

Figure 6. Multi-model mean and standard deviation of the global mean Cloud AFs for the 594 

unmasked (i.e., cloud kernel-derived) AF and CRE-derived AF. Cloud AFs are given for 595 

LW, SW, and net variables for five GCMs averaged over years 2001-2005 of the 596 

Historical simulations.  Unmasked minus CRE-derived cloud AFs gives an estimate of the 597 

cloud masking of the forcing.   598 
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 599 

Figure 7. The relationship between 2003 AF and ECS in CMIP5 and earlier generations 600 

of models. CMIP3 numbers are taken from Knutti [2008] and older models from Kiehl 601 

[2007]. The solid line fits are made using the inverse relationship between forcing and 602 

climate sensitivity postulated by Kiehl [2007]. Data is shown for all CMIP5 models as 603 

black diamonds, using the Historical simulation. A subset of CMIP5 models is shown by 604 

the green squares that are within the 90% uncertainty range of the observed 100 year 605 

linear temperature trend. These models have 1906-2005 linear trends between 0.56 K and 606 

0.92 K, the IPCC [2007] 90% uncertainty range.  R2 values are computed with respect to 607 

the non-linear fit shown. 608 
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 609 

Figure 8. Scatterplots of Historical 2003 AF against α (a) and 2xCO2 AF against α (b).   610 

  611 
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 612 
 613 

Figure 9. Scatterplots of a) AF/ρ,  b) AF, c) ρ, d) α, and e) κ against the temperature 614 

change in 2003 from the Historical simulation.  615 

 616 
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 617 

Figure 10. Resistance (ρ) derived from 2000-2050 trends in the RCP 4.5 and RCP 8.5 618 

scenarios compared to those derived for the 1% per year CO2 increase scenario that is used 619 

to diagnose the TCR.  The black line represents the 1:1 relationship.  620 
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 621 

Figure 11. The a) standard deviation and b) coefficient of variation (standard 622 

deviation/mean) between models for temperature (black) and AF (red) as a function of 623 

time for the RCP8.5 scenario. Note the different time scales on the x axis.  624 

  625 
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 626 

Figure 12. Modeled temperature changes for 2010 and 2095 for the RCP 4.5 scenario, 627 

compared to fitted values from the linear regression. The red line represents the 1:1 628 

relationship. The fitted values are for the linear regression with both α and AF included as 629 

explanatory variables.  630 
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